Generating Recommendation Dialogues from Product Models

Sven Radde and Matthias Beck and Burkhard Freitag

Institute for Information Systems and Software Technology, University of Passau
D-94030 Passau, Germany
{sven.radde, matthias.beck, burkhard.freitag } @uni-passau.de

Abstract

For complex and frequently changing product domains, the
maintenance of an electronic recommender system is a time-
and money-consuming task, as the man-machine interface
has to be adapted to the product model any time the latter
is changed. Ideally, changes in the model would lead to an
automatic adaptation of the recommendation dialogue with-
out much overhead. In this paper we present an approach to
generate an elaborate dialogue from a given product model,
ensuring efficient reaction to changes of the model. Using
statecharts to structure the dialogue, an intuitive, easily visu-
alizable internal representation can be inferred that is able to
handle all principal functions required of a recommender sys-
tem, such as dynamic dialogue management, belief revision
and the generation of recommendations.

Introduction

Today’s market for new automobiles is characterized by a
huge number of choices, extended by different variants per
vehicle, numerous optional features and special equipment,
often available only in packages combined with other extras.
Customers need qualified consultation to match their prefer-
ences with these complex product models.

Apart from its complexity, the product domain changes
frequently and often radically. Updates of the product do-
main may stem from current technical innovations which
often require significant adjustments to a recommendation
dialogue to accommodate previously unknown functional-
ity. As an example, imagine the recent boom of GPS nav-
igation assistants and the currently emerging approaches to
location-based services where salespersons have to famil-
iarize themselves with entirely new technologies, services
and even business models. Furthermore, the recommenda-
tion process has to be adapted to the current marketing cam-
paigns and to regular changes of the product catalogue such
as updated versions of a given vehicle type.

Salespersons have to invest much time making themselves
familiar with the new product catalogues to keep their rec-
ommendation strategies up-to-date. Supporting a salesper-
son with an electronic recommender system reduces the
amount of time that has to be invested into training and lead
to a more efficient recommendation process.

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The contribution of this paper is a uniform method to in-
fer the structure of the recommendation dialogue from the
product model. This way, normal maintenance procedures
applied to the model, e.g., to include new products into the
next catalogue sent to the vendors, automatically lead to an
updated dialogue, which enables timely and cost-efficient
reactions to changes in the product domain.

Statecharts are used to model the dialogue that captures
the preferences of the customer in an elaborate preference
model. It includes functions to handle system- and user-
initiated changes of topic, belief revision and to generate
recommendations based on the preferences. For the latter,
we transform the preference model into statements of an ex-
tension of standard SQL that allows a fine-grained ranking
of the product catalogue with respect to the preferences of
the customer.

In this paper we present an application of statecharts as
a way to formalize recommendation dialogues and a gen-
eration method to infer the statecharts from the model of
a product domain. Our approach uses an elaborate prefer-
ence model, dynamic dialogue management and a ranking
method for the product catalogue. The rest of this paper is
organized as follows: In the next section we describe the
underlying product metamodel before giving an overview
of the dialogue modelling and our preference model. Af-
terwards, we explain in detail how we represent the recom-
mendation dialogue using statecharts. We conclude with a
discussion of related work and some outlooks.

Product Metamodel

Our approach is to generate the recommendation dialogue
from the description of a product in a generic way. This
ensures that changes in the product model are directly rep-
resented in the dialogue during the process of normal model
maintenance. To this end, we will first formulate our notion
of the product metamodel.

Our modelling takes into account that a product usually
consists of different components that are largely indepen-
dent of each other. This is especially true if totally indepen-
dent products are to be “bundled” together. Each component
of a product part will have a number of distinctive features.
These form the basis of a decision for or against this par-
ticular component. The value-range dom(f) of a feature is
represented in the model as a finite set of values (in practice,

continuous features like “price” can be discretized easily).
A simplified model of the product domain “car” will serve
as our running example for the remainder of this paper:

Example 1 A car consists of three components that are mu-
tually independent from the point of view of the customer’s
decision making: the vehicle body, the engine, and the lac-
quering/painting. Apart from a designation/name, the body
has the following features: A design form such as “Sedan”,
“Roadster”, “SUV”’ etc. and a price which is divided into
classes, e.g., “less than $10.000”, “between $ 10.000 and
$20.000” etc. Engines may be distinguished by their horse-
power, fuel type, fuel consumption and their price. The
painting has a type (“normal” or “metallic”), of course a
color and, again, a price.

While product components can be treated in a largely in-
dependent way, restrictions on the way different components
can be combined may exist (e.g., metallic paint may not be
available for some product lines of vehicle bodies). The
metamodel allows to specify so-called restriction relations
Ry, 5, € dom(fi) x dom(f>) to model the fact that a valid
product may have any combination of values v; € dom(f})
and vy € dom(f>) except if (vi,v2) € Ry, f,.

Structuring the Dialogue

The primary goal of the recommendation dialogue is to elicit
the customer preferences in a way such that suitable recom-
mendations can be made. We choose to obtain these pref-
erences explicitly, by asking the customer questions, instead
of applying implicit methods such as collaborative filtering.
Explicit elicitation mimics the structure of a conventional
talk with a salesperson and seems therefore suitable to our
intention of supplementing a natural recommendation dia-
logue. It is our goal to derive the structure of the recommen-
dation dialogue directly from the product model itself.

As noted previously, product parts may often be combined

in a largely independent way to compose the product (“bun-
dle”) to be sold, while a user can have preferences regard-
ing the possible values of the features of each component.
Whenever this precondition holds, it is suitable to represent
the product components as separate topics which are struc-
tured as a number of questions eliciting preferences for a
particular feature from the user.
Example 2 The recommendation dialogue for our car ex-
ample is composed of three topics: “vehicle body”, “en-
gine” and “painting”. The topic “painting” will consist of
three questions, dealing with “type”, “color” and “price”,
respectively.

We conclude that the structure of the dialogue can be de-
rived from the product model in a rather straightforward
way. Before describing the formalization of this dialogue
structure, we will detail our notion of a preference model.

Preference Model

As described, each feature f of the product model is handled
by one question. The goal of a question is to elicit the prefer-
ences for each of the elements of dom(f) that the customer
may either like, dislike or does not care about.

We define a preference as a 3-tuple pref = (f,v,prefval)
with f being a feature of the product, v € dom(f) and
prefval € {pro,con,dontcare}.

Example 3 When offered the possible different choices of
color for his/her new car, e.g., red, green, or blue, the cus-
tomer specifies the following three preferences: (color, red,
pro), (color, green, con) and (color, blue, dontcare).

The recommender system maintains a set P of all cur-
rently specified preferences. If a question regarding a par-
ticular feature f is answered another time, the older values
are overwritten by the newly stated preferences

In general, the value-range is specified within the prod-
uct model. However, given the current instance of the prod-
uct catalogue and previously specified preferences, not ev-
ery element of dom(f) needs to be presented to the user.
For example, the recommender system shall automatically
prune the value-range dom(f) of those values that are not
present in the catalogue. Furthermore, if there exists a re-
striction relation Ry ¢, the system should not ask for a value
v € dom(f) if a preference of (f',V',pro) is already present
in Pand (V/,v) €R r.f» because a positive preference for v
could not be fulfilled anyway.

Representing Dialogues as Statecharts

We chose to treat the recommender system as a state ma-
chine and to use statecharts (Harel 1987; Wieringa 2003) as
a means to visualize and formalize our modelling. State-
charts extend Mealy diagrams in some useful details (state
reaction, state hierarchy and parallelism) that offer a very
powerful and convenient means of expressing the differ-
ent actions within our recommendation process. In ad-
dition, transforming statecharts into the syntax of UML
2.0 State Diagrams (cf. (Wieringa 2003; Drusinsky 2006;
Booch, Rumbaugh, & Jacobson 2005)) is straightforward.
Once the statechart has been generated based on the prod-
uct model, runtime semantics and a concrete implementation
can easily be inferred or even automatically generated with
Model Driven Architecture techniques (see, e.g., (Frankel
2003) for information about MDA).

Representing a Single Topic

As we have described previously, the dialogue is structured
into topics and questions by the underlying product model.
We now present a method to construct a statechart given this
structuring. A topic is a superstate with suitable name and
consists of the following substates (see figure 1 for the con-
struction of the “painting” topic from example 2):

First, we have an initial state, a final state and one state
for each question. The system remains in one of the ques-
tion states (meaning that the according question is currently
displayed by the GUI) until the user responds to the asked
question. This will fire the answer event which in turn will
cause the preferences the user has given in his or her answer
to be stored. Furthermore, it will cause a transition to the
choose_next_question state which may either select another
question of the same topic for being asked next or cause a
transition to the final state of this superstate, indicating a
change of topic.

\ topic::painting \

C question::type)—

ask [question="type’] /

ask [question="color’] /
question::color)—

ask [question="price’] /

C question::price
answer / process(a)

Figure 1: Statechart for topic “painting”

choose_next_question

finished_
topic /

In the choose_next_question state, probabilistic inference
based on Bayesian networks (see, e.g., (Russel & Norvig
1995)) is applied to reason about the necessity of a change
of topic and the most suitable question to be asked next. This
allows aggregation of, e.g., estimates of patience of the cus-
tomer and quality of the recommendation into a probability
of the necessity of a topic change. Furthermore, questions
may change priority based on previous answers, which can
be modelled in a Bayesian network rather naturally. Par-
ticularly the generation of probabilistic networks given our
ever-changing product model is a big challenge. However,
a full elaboration on the subject of the Bayesian inference
techniques is beyond the scope of this paper.

Each of the topics of our dialogue structure is modelled
separately, as described above. Before describing how all
topics are integrated, we will describe the generation of rec-
ommendations.

Generating Recommendations

The necessary steps to generate a recommendation are es-
sentially independent of the underlying product model and
are therefore modelled in a generic way. This part of the
system will run in parallel to the dialogue process and is il-
lustrated in the left part of figure 2. Due to the assumed inde-
pendence of the product components, recommendations can
be constructed independently for each component as well.
Note that only the recommendation belonging to the cur-
rently discussed product component is displayed.

We define a recommendation as a sorted subset of all
available items of the product catalogue for a given product
component. To generate recommendations, we transform
our preference set into statements of the weight-annotated
extension of the SQL as described in (Beck, Radde, & Fre-
itag 2007). Roughly speaking, pro-preferences are assigned
positive weights, dontcare-preferences are assigned weights
of zero while con-preferences receive negative weights. This
leads to an ordered result set with the most suitable products
first.

In the state generate_recommendation, the currently avail-
able preferences are applied to the product catalogue to
obtain the current recommendation. The recommendation

\ full_dialogue

topic::vehicle-body

A

]

fstart [topic="vehicle-body’] /

insufficient_
data /,

choose_ topic::engine

next_topic

]

V'S
/ [Apog-apiyen,

default start [topic="engine’] /

recommendation_
created

show_
recommendation
\ user_topic_change

change_topic(t) /

)

/ [[auibus,

topic::painting

[topic="painting’] /

!
/ [Bunured

Figure 2: Statechart for the full dialogue

engine may issue either the recommendation_created event
which indicates a valid recommendation and causes a tran-
sition to the state show_recommendation. This instructs the
recommendation system to display the recommended prod-
ucts in its user interface. Alternatively, the event insuffi-
cient_data means that there were not enough preferences
to create a recommendation (i.e., no preferences at all, im-
mediately after startup). The system state is switched to
show _default where the user-interface displays some sort of
“default” recommendation (e.g., current special offers).
Due to space limitations, we can only sketch the course of
the dialogue if no products of the catalogue fulfill the stated
preferences of the customer. The recommender system de-
rives a set of “relaxation candidates” from the preferences
and presents a list of the corresponding features to the user
so that he or she can choose which preferences shall be re-
vised. Then, a state transition leading directly to the appro-
priate question state is executed. From this point, the dia-
logue continues as if the question was answered normally.

Integrating all topics

We will now describe the integration of all topics as mod-
elled along the lines of the example in figure 1. Each state-
chart modelling a particular topic is embedded into a larger
statechart that contains all topics derived from the current
product model (see figure 2) and the choose_next_topic state
that is responsible for determining the next appropriate topic
(compare this construction to the approach used within top-
ics in figure 1). A change of topic is then initiated by a
transition into one of the final states within a topic. This “re-
turns” control to the choose_next_topic state, which will then
invoke another of the topic states, taking into account which
of the topics are not finished yet.

Note how figure 2 combines the generated dialogue struc-
ture with the aforementioned construction that deals with
recommendations. The syntactical element of the statechart
syntax used here is called an AND-state, introducing paral-
lelism in the execution of statecharts. While the state ma-
chine is in the “compound” state full_dialogue, it is simul-
taneously in one of the substates of each component state.
Each part of the compound state reacts to events and exe-
cutes state transitions independently of the other part. Notice

that both the dialogue statechart (right part) and the recom-
mendation statechart (left part) react to the answer event that
is fired when the user answers a question (“‘event broadcast-
ing”), resulting in the parallel changing to a new question
and the generation of a recommendation.

To provide a user-friendly dialogue, initiation of topic
changes must not be limited to the system. The user must
be allowed to change the topic himself, which is consistent
with our approach to mimic a dialogue with a salesperson.
Two “levels” have to be considered: 1) changing the ques-
tion within the current topic and 2) changing the topic itself.

To this end, we have introduced another two events:
change_question(q) and change_topic(t). Both events cause
transitions to decision states that “dispatch” to the appropri-
ate question or topic, respectively. The bottom of figure 2 il-
lustrates the handling of change_topic(t). Question switches
within the same topic are similar and were omitted due to
space limitations. The events are generated by the user in-
terface, i.e., if the user clicks on appropriate links in the nav-
igation menu of a web-based application.

Discussion and Conclusion

Statecharts have been proposed as a means of modelling
general conversational dialogues (Kolzer 1999). However,
her intention is to provide dialogue designers with an intu-
itive tool for modelling the dialogue, whereas we focus on
generating the dialogue automatically and use statecharts as
a means of visualization and basis of further processing (i.e.,
code generation).

In (Schmitt & Bergmann 2001), dialogues are formally
modelled as state machines. In their model, a “situation”
(state) contains information about the preferences of the
user, the dialogue history and the current recommendation,
resulting in a large space of possible situations. Depending
on user input, different transition functions between these
states are executed (called “interactions”). A dialogue de-
veloper has to define the “strategy” of the dialogue either
by modelling a directed graph that combines the possible
interactions with the possible situations (resembling, in a
way, a statechart) or by providing a set of ECA rules. This
approach is static and most probably not applicable to the
rapidly changing domains that our approach targets due to
the presumable complexity of the model. Alternatively, they
propose dynamic techniques based on CBR to determine the
next relevant question to be asked, e.g., by measuring in-
formation gain. It does not appear that an explicit product
model is the basis for these methods as, contrastingly, is the
case with our work. We are currently investigating how their
approach can be integrated with our algorithms for question
choosing.

In (O’Neill et al. 2005) an object-oriented architecture
to handle spoken-language dialogues is proposed. The dif-
ferent topics of the domain are treated by “EnquiryExperts”
with “SupportAgents” to handle secondary tasks. Strategy
is defined by ECA rules, while learned knowledge is encap-
sulated in one “DialogFrame” per expert. The static rule
base would be hard to maintain in the presence of changing
product domains, because this approach does not suggest a

way to infer rules, e.g., from the domain knowledge already
modelled in the DialogFrames.

We have presented an approach to generate recommenda-
tion dialogues based on a given product model with partic-
ular attention on supporting frequent changes of the product
model. The dialogue allows the elicitation of preferences
by asking direct questions, as well as user- and system-
initiated changes of topic and belief revision based on relax-
ation of preferences. Recommendations are generated using
an SQL-extension that allows a fine-grained ranking of the
product catalogue.

Execution of the dialogue statecharts has been imple-
mented in a first prototype that is able to accommodate
changes of the product model without the need for modi-
fying the program itself. We are currently evaluating tech-
niques for a more “intelligent” selection of questions based
on probabilistic inference with Bayesian networks. This will
also require to introduce a sophisticated user model to allow,
e.g., reasoning about patience and preferences of topic.

Furthermore, we seek to exploit the fact that statecharts
have a defined semantics as a part of the UML, which would
allow their execution by a general “statechart-interpreter”, in
contrast to the J2EE web application that forms our current
prototype. Also, we will investigate the design of a suitable
UML profile to employ Model Driven Architecture tech-
niques to directly obtain program code from the diagrams.

References
Beck, M.; Radde, S.; and Freitag, B. 2007. Ranking von
Produktempfehlungen mit priferenz-annotiertem SQL. In
Datenbanksysteme in Business, Technologie und Web, vol-
ume 103 of LNI, 82-95. Springer Verlag. In German.
Booch, G.; Rumbaugh, J.; and Jacobson, 1. 2005. The Uni-
fied Modelling Language User Guide. Addison-Wesley.
Drusinsky, D. 2006. Modeling and Verification Using UML
Statecharts. Elsevier.
Frankel, D. S. 2003. Model Driven Architecture. Wiley &
Sons.

Harel, D. 1987. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming
8(3):231-274.

Kolzer, A. 1999. Universal Dialogue Specification for
Conversational Systems. In Special Issue on Intelligent Di-
alogue Systems, number 9 in News Journal on Intelligent
User Interfaces. ETAL

O’Neill, I.; Hanna, P.; Liu, X.; Greer, D.; and McTear, M.
2005. Implementing advanced spoken dialogue manage-
ment in Java. In Special issue on principles and practice of
programming in java, volume 54 of Science of Computer
Programming, 99—124. Elsevier.

Russel, S. J., and Norvig, P. 1995. Artificial Intelligence:
A Moderm Approach. Prentice Hall International, Inc.

Schmitt, S., and Bergmann, R. 2001. A Formal Approach
to Dialogs with Online Customers. In Proceedings of the
14th Bled Electronics Commerce Conference, 309-328.

Wieringa, R. J. 2003. Design Methods for Reactive Sys-
tems. Morgan Kaufmann.

