
Designing a metamodel-based
recommender system

Sven Radde1, Bettina Zach2, Burkhard Freitag1

1 Institute for Information Systems and Software Technology
University of Passau

D-94030 Passau, Germany
http://www.ifis.uni-passau.de/

sven.radde@uni-passau.de; burkhard.freitag@uni-passau.de
2 :a:k:t: Informationssysteme AG

Dr.-Emil-Brichta-Straße 7
D-94036 Passau, Germany

http://www.akt-infosys.de/

bettina.zach@akt-infosys.de

Abstract. Current recommender systems have to cope with a certain
reservation because they are considered to be hard to maintain and to
give rather schematic advice. This paper presents an approach to increase
maintainability by generating essential parts of the recommender system
based on thorough metamodeling. Moreover, preferences are elicited on
the basis of user needs rather than product features thus leading to
a more user-oriented behavior. The metamodel-based design allows to
efficiently adapt all domain-dependent parts of the system.

Key words: conversational recommender system, metamodelling, in-
dustrial application

1 Introduction

High quality assistance in complex product domains requires recommender sys-
tems to move away from strictly feature-centric recommendation approaches to-
wards customer-oriented models. Good salespersons try to elicit the customer’s
needs and expectations about a product rather than asking overly technical ques-
tions. The matching of the customer’s preferences with the technical attributes
of a product is then left to the salesperson’s experience and technical expertise.
Furthermore, e-commerce activities gain more and more importance but, on the
other hand, cannot be mediated by human sales experts. Particularly if the
product domain is highly complex or changes frequently, however, customers
expect a quality of recommendation when shopping online that is comparable to
visiting a store. Hence, digital recommender systems must surpass the common
simple “configurators” in functionality to increase acceptance of online sales.
The main contribution of this paper is an industrial-strength architecture for
a conversational recommender system based on an elaborate customer- and



2 Sven Radde, Bettina Zach, Burkhard Freitag

product-metamodel. The metamodel is coupled with a Bayesian inference en-
gine which is automatically derived from an instance of the customer model.
This approach allows the recommender system to classify users with respect to
different stereotypes, to assess their needs and, finally, to obtain information
about the most recommendable products by inferring likelihoods for the differ-
ent possible technical characteristics of the matching products. Based on the
inferred results, the recommender system adapts its dialogue dynamically and
obtains product recommendations by querying a ranking-enabled database that
contains the product catalogue.
The solution presented in this paper is the result of a joint R&D effort with
contributions from both science and business. This ensures that the developed
metamodel closely resembles the natural recommendation procedures in the tar-
get market of mobile telecommunications. In addition, we found that a wide
range of business domains share the basic assumptions of our metamodel, thus
enabling the re-use of our approach by simply re-instantiating the metamodel.
The latter effectively hides the mathematical complexity of the backend and
therefore allows for a less involved, intuitive maintenance process. Business peo-
ple have often argued that this could be a crucial point for recommender systems,
particulary in fast changing domains.
In summary, we present:
– a metamodel-based approach for the efficient maintenance of a recommender

system;
– an innovative industrial application of recommendation technology based on

this approach;
– some experiences from a real-life implementation of the described principles;

The rest of the paper is organized as follows: In section 2 we describe our use
case in the mobile telecommunications domain, identifying the need for support
by recommender systems. Section 3 introduces the metamodel, while section 4
gives an overview of the proposed architecture. We detail experiences from our
prototypical implementation in section 5, with particular attention on question
selection, generation of recommendations and model maintenance. In section 6
we review some related work, before concluding with an outlook in section 7.

2 Use Case and Market Situation

Today’s market for mobile phones is characterized by a huge number of choices.
It is not uncommon to see more than 100 different items in shops, many of them
differing only in details. The technology itself progresses rather fast, with per-
manently increasing computing power, new hardware options like GPS receivers,
or integration of online services. Customers need qualified consultation to match
their (often vague) preferences with these complex product models. However,
when visiting the web sites of major mobile service providers, one finds most
of them lacking sophisticated recommendation functionality. Commonly, these
websites merely allow customers to restrict the catalogue of available cellphones
by specifying purely technical constraints.



Designing a metamodel-based recommender system 3

The course of action of specialized dealers is notably different: Initially the cus-
tomer is classified according to a set of broad stereotypes, such as “young”,
“business customer”, or the anticipated amount of money he or she would be
willing to spend. This classification determines the broad course of the further
dialogue. Based on their professional experience, sales people then try to assess
the customer’s needs and expectations which are finally mapped onto sugges-
tions for technical features and, consequently, available products. We argue that
emphasising soft criteria like “elegant phone” is one of the key differences be-
tween a natural sales dialogue and the common technology-oriented online phone
configurators.
In addition to its complexity, the product domain changes frequently and often
radically. Updates of the product domain may stem from a temporary mar-
keting campaign, the introduction of new mobile phone variants, or technical
innovations. In particular the latter often requires significant adjustments to a
recommendation dialogue to accommodate previously unknown functionality. It
is commonly not sufficient to change some parameters and therefore necessary
to involve programmers thus leading to correspondingly high delays and costs.
Also, the constant requirement to train shop assistants for these adaptations or
to modify online recommender applications, however, is counteracted by the need
to cut costs, because average monthly revenues per customer decline, forcing re-
tailers to deal with smaller profit margins. In this context, particularly when
looking at retail chains with their even smaller margins, providing salespersons
with a suitably powerful electronic recommender system is a way to keep costs
low. For retail chains and e-commerce use in general, such a system will allow
for a high quality recommendation process, while independent retailers and spe-
cialized dealers will be able to keep up their high standards of recommendation
quality with a significantly reduced training overhead.

3 Metamodel Design

The use-case described in the previous section has been investigated in a joint
R&D project conducted in cooperation of academic researchers and an industry
partner having long-term expertise in the field. One of the primary goals is
to achieve a separation between domain-dependent parts of the system which
have to be adapted to changes on the one hand and a domain-neutral core that
can remain stable even in face of significant changes within the domain on the
other hand. To this end, we propose a domain metamodel basically expressing
our assumption that stereotypes, needs and technical attributes form a network
of mutual influences (see Fig. 1 for a UML representation). Instances of the
metamodel must be created by a suitably experienced domain expert.
For presentation reasons, the product model has been simplified by not includ-
ing those parts that enable the representation of “bundled” articles (i.e., the
combination of two distinct articles to form the eventually sold item as is the
case, e.g., with mobile phones and the corresponding contracts). It is noteworthy
that the presented metamodel is not capable to capture configurable products



4 Sven Radde, Bettina Zach, Burkhard Freitag

-name : String

-aPrioriProbability : Double

Stereotype

-name : String

Need

-valueName : String

-description : String

AttributeValue

-name : String

-description : String

TechnicalAttribute

1
*

-positive : Boolean

-weight : Integer

Influence

*

*

«interface»

Influencer

«interface»

Influenceable

-name : String

Article
1

*

Fig. 1. UML diagram of the domain metamodel

with implicit relations (e.g., “Chosen AC adapter must be able to power all
other components.”) without further ado. Explicit relations, such as “allowed
bundles”, can be modelled and used to construct valid recommendations.
First of all, Stereotypes are broad categories used to classify customers into
classes that are considered representative for the particular application domain.
They can be seen as a set of labels, a subset of which applies to any partic-
ular customer, forming his/her “composite” stereotype. Stereotypes have an a
priori probability assigned that models statistical demographic knowledge about
the prospective customers. Whenever the recommender system does not have
positive knowledge about a Stereotype (e.g., the customer refuses to answer a
corresponding question), it may use the modelled probability (in order to avoid
“stalling” the dialogue). Obviously, this modelling is ideally suited to our use
of Bayesian networks (cf. section 4), but other formalisms may also choose to
exploit this information appropriately. Some Stereotypes will be independent of
each other, while others may exclude or imply another Stereotype.

Example 1. As a brief example within our telecommunications domain, assume
that the following Stereotypes are defined: “Age below 21”, “Age between 21
and 55”, “Age greater than 55”, “Business customer” and “Fun-oriented user”.
Obviously, a customer would be assigned one of the “Age” Stereotypes and one,
both or neither of the other two Stereotypes.

The customer’s composite stereotype influences the Needs that he or she is likely
to have. As opposed to Stereotypes, having or not having certain Needs is rarely
a purely boolean decision. Rather, customers are able to choose from a set of
values ranging from “Not at all.” to “Yes, absolutely.” when answering inquiries
about Needs. Influences between Needs and Stereotypes represent the fact that
being of a certain Stereotype changes the likelihood of having certain Needs.
Accordingly, Influences have a type (positive/negative) indicating the kind, i.e.,
strengthening or weakening, of their effect and a numerical weight expressing
their relative importance. The semantic of Influences is dependent on their type:
Positive Influences increase the likelihood that a customer will feel a Need when
he or she belongs to the corresponding Stereotype and decrease it when this is
not the case. Negative Influences have the opposite meaning. It is worth noting
that a Need is both an Influencer and an Influenceable in our metamodel, thus
enabling “recursion” to model more complex hierarchies of Needs.



Designing a metamodel-based recommender system 5

Stereotype Need Type Weight

Age below 21 Multimedia use positive 1
Age between 21 and 55 Office use positive 1
Business customer Office use positive 3
Fun-oriented customer Multimedia use positive 2
Age below 21 Office use negative 1

Table 1. Representative Influences for example 2

Example 2. Extending the set of Stereotypes from example 1, assume that a
domain expert defines the Needs “Office use” and “Multimedia use”. To integrate
them with the Stereotypes, some representative Influences as shown in Table 1
are defined.

In the domain metamodel, an Article is seen as having a number of Technical-
Attributes which, in turn, have discrete ranges of possible AttributeValues, mod-
elled as a hierarchy of compositions in Fig. 1. Often, a TechnicalAttribute will
have a boolean value range, indicating the presence or absence of a certain prop-
erty. Domain experts may also use this feature to extend technical information
with subjective annotations, such as “fancy casing”, “trendy” or similar.
It is important to establish the notion that the product part of the domain model
for our sample domain does not contain information about concrete products,
i.e., concrete cellphones. Rather, it abstracts from this point of view by providing
a more general description of how “cellphones as a whole” may look like by
enumerating the characteristics of their technical properties. Finally, product
catalogues or databases can be seen as instances of our domain model, i.e., they
form the domain itself. The concrete cellphones available for sale are represented
at this level, described by the terms defined in the domain model.
We note that restricting our domain metamodel to cover only discrete value
ranges is not a significant loss: Even attributes that would normally be considered
to have continuous value ranges often follow quite regular patterns, e.g., “price”
is usually defined in terms of discrete “price bands” anyway. If there are too many
discrete values, one can define buckets and classify the actual values accordingly.
Again, Influences link AttributeValues to Stereotypes and Needs, based on the
notion that, given a certain TechnicalAttribute, some of its AttributeValues are
more likely so satisfy the customer’s Needs than others. See Fig. 2 for a simplified
instance of the domain metamodel, extending examples 1 and 2.
While aiming primarily at the telecommunications market, the underlying as-
sumptions of the metamodel apply to a wide range of similarly structured busi-
ness domains. A technology prototype of our system was used in a completely
different context where it was used to recommend a program of study to potential
beginners, thus demonstrating the general adaptability of the metamodel.

4 Preference Elicitation and Domain Model Usage

All domain-dependent parts of the recommender system described in this paper
can be generated from instances of the metamodel shown in section 3 and are



6 Sven Radde, Bettina Zach, Burkhard Freitag

Attributes / Values

Needs

Stereotypes

Age < 21

21 <= Age <= 55

Age > 55

Business customer

Fun-oriented customer

Multimedia 

use

Office use
UMTS capability

yes

no

MP3 player
yes

no

Memory

capacity

<1 GB

1-2 GB

>2 GB

Influences

Fig. 2. Exemplary domain model. Solid lines denote positive Influences, dotted lines
negative ones.

Customer

Ranking-

enabled

DB

Inference 

Engine
Dialogue 

Manager

Automatic

Generation Process

Relevances

Answers
Preferences

Product
Domain Metamodel 

Instance

Recommendations

Fig. 3. System architecture overview

combined with a domain-independent system core. In [1], we presented a dialogue
structuring method, which acts as the underlying controller component for the
course of the dialogue. [2] presents the Bayesian inference engine and particularly
its generation-method in more detail. Fig. 3 illustrates how these components
are integrated with a ranking-enabled database [3] and the metamodel instance
for a given domain to form our recommender system architecture.
As illustrated by Fig. 3, the recommendation dialogue is generated automatically
from the current domain model after a maintenance iteration has been finished.
The dialogue itself consists of a series of steps, each of which contains a variable
number of questions. The generation step creates one question for each stereotype
and need defined in the domain model. Another set of questions to cover the
technical attributes of the domain model is generated as well, so that the dialogue
may transition to this fine-grained level of detail if necessary.
A question is designed in a way that its answer expresses the customer’s pref-
erences with respect to the corresponding model element, e.g., the need “Office
use”. The Dialogue Manager component, which uses statecharts (see [4, 5]) as its
internal dialogue structuring model, is responsible for the selection of the most
appropriate question and its presentation.
The initial strategy of the dialogue is to attempt to obtain evidences for the
stereotype nodes by asking the corresponding questions first, thus providing a
quick personalization of the network’s state. Afterwards, the customer’s needs are
elicited, leading to further individualization. Answers are passed to the Inference
Engine, which treats them as evidences for its internal Bayesian network (see,



Designing a metamodel-based recommender system 7

Domain metamodel element Generated element(s)

Stereotype Question & Boolean node in the Bayes net
Need Question & “Graded” node in the Bayes net
Technical attribute Question
Attribute value Boolean node in the Bayes net
Influence Edge in the Bayes net & Defines the CPTs

Table 2. Generated system elements

e.g., chapter 14 of [6]). The latter is also based on the domain model and is
constructed during the generation step.
Table 2 gives a summary of the system elements that are generated from the
domain model. Stereotypes are represented as chance nodes with a boolean value
range (and a-priori probabilities are set according to the domain model), whereas
needs are modeled as chance nodes with a value range to reflect the possible
“graded” answers mentioned in section 3. Product attributes are included in the
network by creating one boolean node for each element of their respective ranges
of attribute values. Finally, the modeled influences are represented as edges be-
tween the corresponding nodes. The conditional probability tables (CPTs) of the
influenced nodes are designed to reflect the causal effects implied by the influ-
ences of the domain model (cf. [2] for details): 1) Belonging to certain stereotypes
implies that some needs are more likely than others; 2) Having a certain need
implies that a product with appropriate technical properties will be more useful
than another.
As discussed in subsection 5.1 below, the Inference Engine computes estimations
of the importance of each question which the Dialogue Manager, in turn, uses to
select the most relevant question to ask next. By tracking the causal influences
mentioned above, the Inference Engine also provides estimations of the useful-
ness of technical attributes. Based on the results, a personalized multi-attribute
utility function is constructed which is then used by the Ranking Database to
sort the products in the catalogue and to determine the current, personalized
recommendation. Conceptionally, the whole product catalogue is ranked, but
Top-K operators may be used to limit the size of the recommendation (e.g., to
match the capabilities of the user interfaces at hand).
To summarize, a complete dialogue step contains the following actions:
1. Present the current questions to the customer and receive answers;
2. Update the evidences in the Bayesian network according to the answers;
3. Calculate the new posteriori probability distributions;
4. Construct utility function and execute ranking query to create new recom-

mendations;
5. Determine next questions based on predicted answers;

Dialogue steps are iterated until the customer decides to buy one of the recom-
mended products or the system runs out of questions. For the latter case, ques-
tions about technical attributes are asked which should quickly narrow down
the available choices and therefore eventually lead to the purchasing decision. In
addition, customers are always able to supply technical requirements which are
taken into account for ranking purposes. Alternatively these requirements may



8 Sven Radde, Bettina Zach, Burkhard Freitag

Fig. 4. Application screenshots showing questions (left) and recommendations (right)

be treated as hard constraints. Having hard constraints in the system, however,
leads to the possibility of empty recommendations and therefore may require
constraint relaxation, whereas representing technical requirements as soft con-
straints implicitly ensures that always at least one recommendation is available.
Hence, hard constraints are only enabled at the explicit request of the customer.
The current recommendation is displayed in parallel to the questions of the
current dialogue step and the customer is of course free to end the dialogue at
any time (either by buying or by leaving the website).

5 Experiences

A recommender system based on the approach described above has been im-
plemented as an ASP.net web application (cf. Fig. 4). Our prototype exhibited
reasonable performance and will be integrated into an established order man-
agement system. The system has been demonstrated to selected customers and
will continue to be presented to interested parties. We have already gathered
valuable feedback from these initial evaluations. In addition, we are planning to
conduct a large-scale field-test to obtain statistical results about the quality of
recommendations and intuitiveness of dialogue management.

5.1 Selecting the next question

The dialogue manager selects questions based on the probabilities that the
Bayesian network predicts for the possible answers (cf. [2]). In our current pro-
totype, the most relevant questions are those with particularly confident pre-
dictions. The basic assumption is that the customer has a clear opinion about
these questions and that, because of this, they should be asked first. Also, our
prototype can display “empathic” behaviour by pre-selecting the most probable
answer option for these questions in the GUI. Our experiences with the proto-
type show that customers generally agree that the questions shown this way are
very relevant for the recommendation process and that the preselected answers
resembled more or less exactly the choice the user would have made.
However, the approach also exhibited a few shortcomings during our tests. Due to
the described way of choosing questions, the early phases of the dialogue mostly



Designing a metamodel-based recommender system 9

consist of confirming the predictions of the inference engine predictions. As a
consequence, the Bayesian network does not acquire much “new” knowledge
quickly, meaning that its calculated a posteriori probabilities do not change
much. As the latter are also used to obtain the recommended products, this
leads to the following observed behaviour:
1. Defining the stereotypes at the beginning of the dialogue has a significant

influence on the generated recommendations;
2. Confirming the confidently predicted questions during the early dialogue

does not change the recommendations significantly;
3. Only later on, when other questions are answered, do the recommendations

stabilize towards the eventually preferred products;

To improve this behaviour, the dialogue manager will be modified to prefer ex-
actly those questions that have a particularly uncertain answer prediction. Ini-
tial evaluations show that this leads to more significant early changes within the
Bayesian network that tend to stabilize later on. In other words, the Bayesian
network obtains the most important knowledge earlier and only confirms its pre-
dictions afterwards. We will enter our field-test with both variants to investigate
the user-friendliness of the approaches but we expect that the tendency towards
shorter, more “efficient” dialogues will prove superior to our previous strategy.
Also, it is desirable to exploit possible semantic connections between individual
needs and their corresponding questions. A question might, for instance, be a
logical successor of another, or answering a given question in a certain way
may mean that some other questions are useless to ask. Therefore, the dialogue
manager will be extended to infer these relationships from the structure of the
Bayesian network as far as possible. The goal is to form sensible chains of dialogue
steps without having to extend the metamodel with capabilities to explicitly
define “cliques” of questions.

5.2 Recommendations

During our evaluations we observed that users commonly assign a higher subjec-
tive importance to their most recent answers. Consequently, products satisfying
the corresponding needs were expected to be displayed as a recommendation in
the next dialogue step. Recommendations were regarded as incomplete if the top
products displayed on screen do not reflect these answers distinctly.
In contrast, our ranking method always uses all available preferences and does
not specifically consider the “age” of any given answer. This means that in some
cases the most recent questions do not have an obvious effect on the displayed
recommendations. Researching measures to extend the ranking mechanism by a
notion of “temporal” importance of questions is part of our ongoing work.

5.3 Model Maintenance

To qualify for being integrated into the industrial sales/distribution processes,
any approach must minimize the required maintenance overheads. The mere ex-
istence of a model already reduces maintenance efforts for the most common case:



10 Sven Radde, Bettina Zach, Burkhard Freitag

Adding new products is fully transparent, as long as they can be described in
terms of the established domain model. Conventional approaches would require
adaptation to integrate the new products. The product model itself needs adap-
tation only if technical innovations cause the addition of new TechnicalAttributes
or an extension of the value ranges of existing attributes.
Considering the maintainability of the customer model, the Stereotypes exhib-
ited reasonable stability over time, and, to a certain extent, even across dif-
ferent business domains. This is obviously due to the fact that they represent
sociodemographic knowledge about the customers. Domain experts primarily
have to define the Needs and Influences of the domain model. As the Influences
are defined with respect to AttributeValues of the domain model (as compared
to concrete products), these associations remain stable when new products are
added. Once changes have been applied to the model, the system backend is
re-generated automatically (see section 4), completely hiding the mathematical
and informatical complexities from the model designer.
In addition, integrating the maintenance of the domain model into the existing
business processes of catalogue creation and maintenance provides potential for
even further optimizations. As the model contains a significant amount of mar-
keting knowledge, it can be re-used, e.g., to simplify the creation of printed mar-
keting materials by automatically annotating products with information about
which needs they satisfy particularly well.

6 Related Work

Our recommendation approach is notably different from collaborative filtering
methods (cf., e.g., [7, 8]) by not requiring item ratings. Assuming that the same
user will not interact with the system very frequently (typically, in our domain,
a user will buy a single new cellphone about every two years), we cannot rely on
buying histories to build our model of the user. While eliciting explicit ratings
may be acceptable in an online context, it is not an adequate form of interaction
between salespersons and customers. Hence, our user-model builds on informa-
tion that can be elicited during the course of a natural sales dialogue.
Ardissono et al. [9, 10] present a personalized recommender system for config-
urable products. Their approach involves preference elicitation techniques that
employ reasoning about customer profiles to tailor the dialogue to a particular
customer by providing explanations and smartly chosen default values wherever
possible. The customer preferences learned this way are then used as constraints
in the configuration problem at hand to generate the recommended product
configuration, which might result in empty recommendations (i.e., the specified
constraints are not satisfyable), requiring repair actions. Our approach does not
directly exploit the elicited preferences as constraints but rather uses them as an
input to ranking database queries which return a list of product recommenda-
tions ordered according to the customer’s preferences. To suggest personalized
default answers to questions, our approach does not need to rely on a set of
business rules as appears to be the case in [9].



Designing a metamodel-based recommender system 11

In [11], the dialogue-oriented recommender suite CWAdvisor is presented. Their
knowledge-base is similar to ours but it includes an explicit representation of the
“recommender process definition”, i.e. all possible dialogue paths in a tree-like
structure. While obviously able to specify a fine-grained dialogue, the achievable
level of detail is limited by the complexity of the dialogue specification. Our ap-
proach generates the (equally complex) dialogue specification from a much more
compact model and is more flexible by incorporating mixed-initiative selection
of questions, easy belief revision and adaptive personalization.
An adaptive approach to select technical questions is presented in [12] that is
able to suggest “tightenings” (i.e. further questions) to reduce recommendation
size based on a previously learned probability model. Their approach includes
the possibility to re-learn the model when more dialogue histories are available.
In contrast, our approach does not include a learning step but delegates that task
to a domain expert. Also, our model is not concerned with direct connections be-
tween dialogue elements as is the case in [12] but rather specifies a more abstract
view on the product domain from which the dialogue structure is inferred.
An approach similar to ours is presented in [13]. However, the utility estimations
(the “value tree”) of Jameson et al. do not seem to be built on an explicit model
of the currently served customer but rather on an average user of their system.
Hence, the recommendations are not personalized as strongly as in our approach
which allows an adaption even to atypical customers by setting the appropriate
stereotypes. Also, as the value tree is a strictly hierarchical structure, it cannot
capture the fact that a technical attribute may be influenced by more than a
single need. Furthermore, it is not completely clear how informal statements
(e.g., “I am a law student.”) can be interpreted as relevant knowledge (e.g., an
increased interest in politics) by the system apart from the possibility that a
domain expert models this association directly within the Bayesian network.
A domain model based on dynamic logic programming was introduced by Leite
and Babini in [14]. Both customer and user model are represented using a mas-
sive set of declarative rules which allows a detailed and powerful specification of
the business domain – possibly even extended by user-supplied rules. However,
the complex formal models appear expensive to maintain when confronted with
domain changes. Furthermore, it seems unlikely that domain experts, much less
customers, are able to express their knowledge by logic rules, whereas intuitive-
ness and maintainability of the model are two key points of our approach.

7 Conclusion

This paper presents an approach for a dialogue-based recommender system, tak-
ing industrial maintainability requirements into consideration. The focus of our
prototypical implementation is the telecommunications market, but the system
has been designed with domain-independence in mind and therefore establishes
a strict separation of domain-dependent and domain-independent parts. This
is achieved by using a domain metamodel explicitly designed to allow efficient
maintenance. All domain-specific parts of the system are generated from in-



12 Sven Radde, Bettina Zach, Burkhard Freitag

stances of the metamodel. The overall architecture comprises a dynamic dialogue
management, a preference elicitation component based on Bayesian networks,
and a ranking-based retrieval from the product database.
The evaluation of a prototypical implementation proved the general usability of
our approach and also yielded valuable lessons for further technical improve-
ments: Determining questions’ relevances and aligning the recommendations
with the customers’ expectations are the crucial points for our ongoing research.
We will refine our approach based on the first evaluation and a thorough field-test
relating the computed outcome of the recommender system with the experience
and expectations of users and sales experts.

References

1. Radde, S., Beck, M., Freitag, B.: Generating recommendation dialogues from prod-
uct models. In: Proc. of the AAAI-07 Workshop on Recommender Systems in
E-Commerce, AAAI Press (2007)

2. Radde, S., Kaiser, A., Freitag, B.: A model-based customer inference engine. In:
Proc. of the ECAI-08 Workshop on Recommender Systems. (2008)

3. Beck, M., Freitag, B.: Weighted boolean conditions for ranking. In: Proc. of
the IEEE 24th International Conference on Data Engineering (ICDE-08) – 2nd
International Workshop on Ranking in Databases (DBRank08). (2008)

4. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8(3) (1987) 231–274

5. Wieringa, R.: Design Methods for Reactive Systems. Morgan Kaufmann (2003)
6. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall

International Editions (1995)
7. Jin, R., Si, L., Zhang, C.: A study of mixture models for collaborative filtering.

Information Retrieval 9(3) (2006) 357–382
8. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering

Recommender Systems. ACM Trans. on Information Systems 22(1) (2004) 5–53
9. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Meyer, M.,

Petrone, G., Schaefer, R., Schuetz, W., Zanker, M.: Personalizing online con-
figuration of products and services. In: Proc. of the 15th European Conference on
Artificial Intelligence (ECAI-02). (2002)

10. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schae-
fer, R., Zanker, M.: A framework for the development of personalized, distributed
web-based configuration systems. AI Magazine 24(3) (2003) 93–110

11. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment
for the development of knowledge-based recommender applications. Intl. Journal
of Electronic Commerce 11(2) (2006) 11–34

12. Mahmood, T., Ricci, F.: Learning and adaptivity in interactive recommender
systems. In: Proc. of the 9th Intl. Conference on Electronic Commerce, ACM
(2007)

13. Jameson, A., Schaefer, R., Simons, J., Weis, T.: Adaptive provision of evaluation-
oriented information: Tasks and techniques. In: Proc. of the 14th Intl. Joint Con-
ference on Artificial Intelligence (IJCAI-95). (1995)

14. Leite, J., Babini, M.: Dynamic knowledge based user modeling for recommender
systems. In: Proc. of the ECAI-06 Workshop on Recommender Systems. (2006)


